If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+540x+3000=0
a = 3; b = 540; c = +3000;
Δ = b2-4ac
Δ = 5402-4·3·3000
Δ = 255600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{255600}=\sqrt{3600*71}=\sqrt{3600}*\sqrt{71}=60\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(540)-60\sqrt{71}}{2*3}=\frac{-540-60\sqrt{71}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(540)+60\sqrt{71}}{2*3}=\frac{-540+60\sqrt{71}}{6} $
| (2p+2)-(6p+9)=1 | | 7(x-3)=-2+33 | | 50+b+48=180 | | 8o+25=3o | | 10-3n=4-2n | | 5-2l=6-l | | 11i+17=6i+37 | | 10h+11=5h-4 | | F(x)=7x2-2x+4 | | 5e-2=3e-2 | | 3a-2=4a-3 | | 15+6t=3t | | 2s-5s=-27 | | 5r=3r-2 | | 4^3b=8^2b | | 12p-24=9p | | 6o+6=9o | | 8f+3=7f | | 7x+5-8x=2x-6 | | 28-2l=2l | | 20+3i=5i | | -2(3x-4)=5x-(-4x+2) | | 6+4h=6h | | 5y+50=y^2 | | (4x+6)-(x+5)=0 | | F+30=7f | | 4n-n=45 | | 4e-4=6e | | 2/8m=25 | | 3b-4=2b | | 9a-2a=42 | | –4.8(6.3x–4.18)=-58.56 |